In the diagram below, note how that negative charge is delocalized over three different oxygens [the same is true for the TsO and H2PO4 anions]. CH3OH: Note: NaBH4 is not strong enough to reduce . N2O and CN. Evidence for the formation of methyl hydrogen sulfate (MHS) was obtained by the presence of a new peak in the 800 cm-1 region, not present in either the neat methanol or concentrated sulfuric acid spectra. Since it requires deprotonation to create a better leaving group, I would think not but Im not sure. copyright 2003-2023 Homework.Study.com. Master Organic Chemistry LLC, 1831 12th Avenue South, #171, Nashville TN, USA 37203, Copyright 2023, Master Organic Chemistry, Elimination Reactions Are Favored By Heat, Elimination Reactions (2): The Zaitsev Rule, Elimination (E1) Reactions With Rearrangements, Elimination (E1) Practice Problems And Solutions (MOC Membership). Write detailed mechanisms for the following reaction. Under aqueous acidic conditions the epoxide oxygen is protonated and is subsequently attacked by a nucleophilic water. Click hereto get an answer to your question (a) Write the mechanism of the following reaction: 2CH3CH2OH H^+CH3CH2 - O - CH2CH3 (b) Write the equation involved in the acetylation of salicyclic acid In a regioselective reaction, two (or more) different constitutional isomers are possible as products, but one is formed preferentially (or sometimes exclusively). Two Methods For Solving Problems, Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams), How To Determine R and S Configurations On A Fischer Projection, Optical Rotation, Optical Activity, and Specific Rotation, Stereochemistry Practice Problems and Quizzes, Introduction to Nucleophilic Substitution Reactions, Walkthrough of Substitution Reactions (1) - Introduction, Two Types of Nucleophilic Substitution Reactions, The Conjugate Acid Is A Better Leaving Group, Polar Protic? Between substitution and elimination reactions in alcohols which one is catalyzed with acid or a base? Show all steps. Now lets ask: How could this have formed? Examples of solvents used in S N 1 reactions include water and alcohol. The last column of the resulting matrix will contain solutions for each of the coefficients. Loss of H2O to form a carbocation followed by elimination will be the favoured pathway. identify the product formed from the reaction of a given epoxide with given base. Here's the general reaction for a ring opening of epoxides when everything is acid-catalyzed. Mixed ethers under similar conditions give a mixture of alcohols. Monochlorination Products Of Propane, Pentane, And Other Alkanes, Selectivity in Free Radical Reactions: Bromination vs. Chlorination, Types of Isomers: Constitutional Isomers, Stereoisomers, Enantiomers, and Diastereomers, Introduction to Assigning (R) and (S): The Cahn-Ingold-Prelog Rules, Assigning Cahn-Ingold-Prelog (CIP) Priorities (2) - The Method of Dots, Enantiomers vs Diastereomers vs The Same? However, if one of the epoxide carbons is tertiary, the halogen anion will primarily attack the tertialy cabon in a SN1 like reaction. When this occurs the product typically contains a mixture of enantiomers. Indeed, larger cyclic ethers would not be susceptible to either acid-catalyzed or base-catalyzed cleavage under the same conditions because the ring strain is not as great as in the three-membered epoxide ring. H 2SO 4 is added to an alcohol at such a high temperature, it undergoes elimination and thus, gives an alkene. Note: No effect on tertiary alcohols: Na2Cr2O7 . If we add a strong base here (to perform an E2) it will just end up neutralizing this species. You might ask: if we treat a primary alcohol (say, 1-butanol) with a strong acid like H2SO4, will also get elimination to an alkene? Aldehydes and Ketones: 14 Reactions With The Same Mechanism, Sodium Borohydride (NaBH4) Reduction of Aldehydes and Ketones, Grignard Reagents For Addition To Aldehydes and Ketones, Imines - Properties, Formation, Reactions, and Mechanisms, Breaking Down Carbonyl Reaction Mechanisms: Reactions of Anionic Nucleophiles (Part2), Nucleophilic Acyl Substitution (With Negatively Charged Nucleophiles), Addition-Elimination Mechanisms With Neutral Nucleophiles (Including Acid Catalysis), Basic Hydrolysis of Esters - Saponification, Fischer Esterification - Carboxylic Acid to Ester Under Acidic Conditions, Lithium Aluminum Hydride (LiAlH4) For Reduction of Carboxylic Acid Derivatives, LiAlH[Ot-Bu]3 For The Reduction of Acid Halides To Aldehydes, Di-isobutyl Aluminum Hydride (DIBAL) For The Partial Reduction of Esters and Nitriles, Carbonyl Chemistry: Learn Six Mechanisms For the Price Of One, Carboxylic Acid Derivatives Practice Questions, Enolates - Formation, Stability, and Simple Reactions, Aldol Addition and Condensation Reactions, Reactions of Enols - Acid-Catalyzed Aldol, Halogenation, and Mannich Reactions, Claisen Condensation and Dieckmann Condensation, The Malonic Ester and Acetoacetic Ester Synthesis, The Amide Functional Group: Properties, Synthesis, and Nomenclature, Protecting Groups for Amines - Carbamates, Reactions of Diazonium Salts: Sandmeyer and Related Reactions, Pyranoses and Furanoses: Ring-Chain Tautomerism In Sugars, The Big Damn Post Of Carbohydrate-Related Chemistry Definitions, Converting a Fischer Projection To A Haworth (And Vice Versa), Reactions of Sugars: Glycosylation and Protection, The Ruff Degradation and Kiliani-Fischer Synthesis, Isoelectric Points of Amino Acids (and How To Calculate Them), A Gallery of Some Interesting Molecules From Nature. Required fields are marked *. Attack takes place preferentially from the backside (like in an SN2 reaction) because the carbon-oxygen bond is still to some degree in place, and the oxygen blocks attack from the front side. You can also ask for help in our chat or forums. Download Citation | Investigation of Cr-MIL-100 and Cr-MIL-101 activity and stability in amidation reaction of fatty acid methyl esters | Chromium containing metal-organic frameworks (MOFs) Cr . Expert Answer. The loss of water from 3 may be stepwise but, to save space, I have presented the loss of water in a single operation. It also discusses the SN1 / SN2 dehydration of a diol into a cyclic ether.My Website: https://www.video-tutor.netPatreon: https://www.patreon.com/MathScienceTutorAmazon Store: https://www.amazon.com/shop/theorganicchemistrytutorDisclaimer: Some of the links associated with this video may generate affiliate commissions on my behalf. If you see a primary alcohol with H2SO4, TsOH, or H3PO4, expect symmetrical ether formation accompanied by elimination to form the alkene. This is the pattern of an elimination reaction. For example, C 2 H 5 OC 2 H 5 + H 2 O ---- ( dil.H2so4,high pressure )-----> 2C 2 H 5 OH. What would be the elimination product of 2-methyl-2-phenylpropan-1-ol? The nucleophile itself is potent: a deprotonated, negatively charged methoxide ion. In Step 1, a hydronium or oxonium ion is attacked by the bond.. Write a mechanism for the following reaction. What's The Alpha Carbon In Carbonyl Compounds? There it goes again: we remove a proton from the carbon with the most attached hydrogens; its the carbon with the FEWEST attached hydrogens! This is an E1 process[elimination (E) , unimolecular (1) rate determining step]. Please draw it out and explain. octubre 2nd, 2021 | when did bruce jenner come out to kris. Because the reaction takes place by an SN2 mechanism the two -OH groups in the product will be trans to each other. The best way to depict the acid-catalyzed epoxide ring-opening reaction is as a hybrid, or cross, between an S N 2 and S N 1 mechanism. Greenwood & Earnshaw note the following species present in pure sulfuric acid (in order of decreasing abundance, with $\ce{H2SO4}$ itself being the solvent): $\ce{HSO4 . Compound states [like (s) (aq) or (g)] are not required. 3. 6.11 (a) Being primary halides, the reactions are most likely to be S . The sulfonation of an aromatic ring with SO_3 and H_2SO_4 is reversible. Chemical properties such as reactions with chlorine, HI, and oxidation reactions are also discussed. But today I came across another reaction. Use your graphing calculator's rref() function (or an online rref calculator) to convert the following matrix into reduced row-echelon-form: Simplify the result to get the lowest, whole integer values. CrO3 H2SO4. Predict the product of the following reaction. According to the following reaction, which molecule is acting as an acid? Fused Rings - Cis-Decalin and Trans-Decalin, Naming Bicyclic Compounds - Fused, Bridged, and Spiro, Bredt's Rule (And Summary of Cycloalkanes), The Most Important Question To Ask When Learning a New Reaction, The 4 Major Classes of Reactions in Org 1. Sulphuric acid. In the discussion on basecatalyzed epoxide opening, the mechanism is essentially SN2. Base makes the OH a better nucleophile, since RO(-) is a better nucleophile than the neutral alcohol ROH. An alkoxide is a poor leaving group, and thus the ring is unlikely to open without a 'push' from the nucleophile. https://en.wikipedia.org/wiki/Corey%E2%80%93Winter_olefin_synthesis, http://www.columbia.edu/itc/chemistry/c3045/client_edit/ppt/PDF/05_08_13.pdf, The hydroxyl group of alcohols is normally a poor, However, when treated with strong acid, R-OH is converted into R-OH. The answer is that theHSO4 anion is a very poor nucleophile, being quite stabilized by resonance. why. So to edge too gives me two moles off Georgian, plus one more off water. Provide the reagents for the following reaction. Both substitution and elimination reactions of alcohols can be catalyzed by acid. Give the structure of the major organic product for the following reaction: SO3 H2SO4 conc. In the basic, SN2 reaction, the leaving group is an alkoxide anion, because there is no acid available to protonate the oxygen prior to ring opening. ; If a strong acid such as H 2 SO 4 or p-TsOH is used, the most likely result is . Draw the mechanism of the following reaction shown below: Draw a stepwise mechanism for the following reaction. The transfer of the proton to the oxygen gives it a positive charge, but it is actually misleading to draw the structure in . This video describes the mechanism for the reaction between hydrochloric acid and methanol, using standard arrows to explain the "electron pushing". An alkoxide is a poor leaving group (Section 11-3), and thus the ring is unlikely to open without a 'push' from the nucleophile. Provide the mechanism for the reaction below. The carbocation itself is the (alpha) carbon]. The nonenzymatic ring-opening reactions of epoxides provide a nice overview of many of the concepts we have seen already in this chapter. Draw the major organic product formed by the reaction of 2-hexyne with the following reagent: H_2O in H_2SO_4/HgSO_4. Provide the mechanism for the following reaction. When a nucleophilic substitution reaction involves a poor leaving group and a powerful nucleophile, it is very likely to proceed by an SN2 mechanism. Not in one step. During the ring-opening of an asymmetrical epoxide, the regiochemical control of the reaction usually allows for one stereoisomer to be produced. In this reaction, the epoxide oxygen is protonated first, making it a better leaving group; In the second step, the nucleophile tends to attack the more substituted carbon, which breaks the weakest C-O bond. Migration of Ph- is faster than R- but will lead to a less stable intermediate and vice versa. The third unit of acetone is incorporated via the vinylogous enol 4b to . If the epoxide is asymmetric the incoming hydroxide nucleophile will preferable attack the less substituted epoxide carbon. Chemistry questions and answers. write the mechanism for the opening of an epoxide ring by an aqueous acid, paying particular attention to the stereochemistry of the product. In the following equation this procedure is illustrated for a cis-disubstituted epoxide, which, of course, could be prepared from the corresponding cis-alkene. The acid such as sulfuric acid makes the hydroxyl group a better leaving group by protonating it. Legal. Chemical Properties of Ethers (with H2SO4) On heating with dilute sulfuric acid under pressure, ethers are hydrolysed to alcohols. Show the mechanism of the desulfonation reaction. (Remember to show stereochemistry), Note that the stereochemistry has been inverted, Predict the product of the following, similar to above but a different nucleophile is used and not in acidic conditions. An acid catalyzed hydro-alkoxy addition is the addition of an alcohol to a C=C double bond to form an ether.. An example is the addition of methanol to 2-methylpropene to form t-butyl methyl ether.. In this webpage (http://www.columbia.edu/itc/chemistry/c3045/client_edit/ppt/PDF/05_08_13.pdf), Butan-1-ol gave 2-butene as a major product. After completing this section, you should be able to. how often are general elections held in jamaica; allison transmission service intervals; hays county housing authority; golden dipt breading recipe; measuring communication effectiveness ppt; kim coles child; door county cherry vodka recipes; Reactants are H2SO4 and heat. Depends on the structure of the substrate. Elimination in the sense of this post refers to formation of a double bond. Since there are an equal number of atoms of each element on both sides, the equation is balanced. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. The reaction with ethene. identify the product formed from the hydrolysis of an epoxide. Heat generally tends to favour elimination reactions. Here is the reaction off. So why do we get elimination reactions with H2SO4 as acid (or H3PO4, or TsOH) whereas we get substitution reactions with HCl, HBr, and HI? If the alcohol is a primary or secondary alcohol, this can then be oxidized to an aldehyde or ketone, or onwards. HSO4- is an extremely poor nucleophile for the SN2. Provide the mechanism for the following reaction: H2SO4, CH3OH, Heat. Proton transfer from the acid catalyst generates the conjugate acid of the epoxide, which is attacked by nucleophiles such as water in the same way that the cyclic bromonium ion described above undergoes reaction. The balanced equation will appear above. Further information about equation CH 3 OH + H 2 O + H 2 SO 4 + C 2 H 3 CN NH 4 HSO 4 + C 2 H 3 COOCH 3 What is reaction condition of CH3OH (methanol) reacts with H2O (water) reacts with H2SO4 (sulfuric acid) reacts with C2H3CN (Ventox; Acritet; Acrylon; Carbacryl; Fumigrain; Acrylonitrile; Cyanoethylene; Vinyl cyanide; 2-Propenenitrile; TL-314; RCRA waste number U-009; ENT-54; VCN; 2-1513 . The carboxyl carbon of the carboxylic acid is protonated. Propose a full mechanism for the following reaction. Predict the products from the reaction of 5-decyne with H_2O, H_2SO_4, HgSO_4. The upshot is that delocalization of charge results in a slower reaction of HSO4 as a nucleophile compared to deprotonation of C-H by a base, and the alkene product dominates. Get more out of your subscription* Access to over 100 million course-specific study resources; 24/7 help from Expert Tutors on 140+ subjects; Full access to over 1 million Textbook Solutions 2. how long can a dog live with parathyroid disease. Explain why 1-bromohex-2-ene reacts rapidly with a weak nucleophile (CH3OH) under SN1 reaction conditions, even though it is a 1 degree alkyl h; Draw the structure of the major organic product formed in the reaction. predict the major product from the acidic cleavage of a given unsymmetrical epoxide. How To Determine Hybridization: A Shortcut, Sigma bonds come in six varieties: Pi bonds come in one, A Key Skill: How to Calculate Formal Charge, Partial Charges Give Clues About Electron Flow, The Four Intermolecular Forces and How They Affect Boiling Points, How To Use Electronegativity To Determine Electron Density (and why NOT to trust formal charge), How To Use Curved Arrows To Interchange Resonance Forms, Evaluating Resonance Forms (1) - The Rule of Least Charges, How To Find The Best Resonance Structure By Applying Electronegativity, Evaluating Resonance Structures With Negative Charges, Evaluating Resonance Structures With Positive Charge, In Summary: Evaluating Resonance Structures, Drawing Resonance Structures: 3 Common Mistakes To Avoid, How to apply electronegativity and resonance to understand reactivity, The Stronger The Acid, The Weaker The Conjugate Base, Walkthrough of Acid-Base Reactions (3) - Acidity Trends, Acid-Base Reactions: Introducing Ka and pKa, A Handy Rule of Thumb for Acid-Base Reactions, How Protonation and Deprotonation Affect Reactivity, Meet the (Most Important) Functional Groups, Condensed Formulas: Deciphering What the Brackets Mean, Hidden Hydrogens, Hidden Lone Pairs, Hidden Counterions, Primary, Secondary, Tertiary, Quaternary In Organic Chemistry, Branching, and Its Affect On Melting and Boiling Points, Wedge And Dash Convention For Tetrahedral Carbon, Common Mistakes in Organic Chemistry: Pentavalent Carbon, Table of Functional Group Priorities for Nomenclature, Organic Chemistry IUPAC Nomenclature Demystified With A Simple Puzzle Piece Approach, Staggered vs Eclipsed Conformations of Ethane, Newman Projection of Butane (and Gauche Conformation), Geometric Isomers In Small Rings: Cis And Trans Cycloalkanes, Calculation of Ring Strain In Cycloalkanes, Cycloalkanes - Ring Strain In Cyclopropane And Cyclobutane, Cyclohexane Chair Conformation: An Aerial Tour, How To Draw The Cyclohexane Chair Conformation, The Cyclohexane Chair Flip - Energy Diagram, Substituted Cyclohexanes - Axial vs Equatorial, Ranking The Bulkiness Of Substituents On Cyclohexanes: "A-Values". Reaction (2) because the ethyl sulde ion is a stronger nucleophile than the ethoxide ion in a protic solvent. Reactants Reagents Products Help; Na2Cr2O7 H2SO4, H2O: Note: Oxidation of primary alcohols to carboxylic acids: Na2Cr2O7 H2SO4, H2O: Note: Oxidation of secondary alcohols to ketones: Na2Cr2O7 H2SO4, H2O: No Products Predicted. Acid-catalyzed dehydration of 2 via the enol 3 leads to mesityl oxide 4. Label each compound (reactant or product) in the equation with a variable to represent the . Notice what happens here: first we protonate the alcohol to give the good leaving group OH2+ , and then a weak base (which Im leaving vague, but could be H2O, (-)OSO3H, or another molecule of the alcohol) could then break C-H, leading to formation of the alkene. Attack takes place preferentially from the backside (like in an SN2 reaction) because the carbon-oxygen bond is still to some degree in place, and the oxygen blocks attack from the front side. The Third Most Important Question to Ask When Learning A New Reaction, 7 Factors that stabilize negative charge in organic chemistry, 7 Factors That Stabilize Positive Charge in Organic Chemistry, Common Mistakes: Formal Charges Can Mislead, Curved Arrows (2): Initial Tails and Final Heads, Three Factors that Destabilize Carbocations, Learning Organic Chemistry Reactions: A Checklist (PDF), Introduction to Free Radical Substitution Reactions, Introduction to Oxidative Cleavage Reactions, Bond Dissociation Energies = Homolytic Cleavage. There should be two key carbocation intermediates and arrows should be used correctly. Use uppercase for the first character in the element and lowercase for the second character. As a result, product A predominates. 18: Ethers and Epoxides; Thiols and Sulfides, { "18.00:_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.01:_Names_and_Properties_of_Ethers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.02:_Preparing_Ethers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.03:_Reactions_of_Ethers-_Acidic_Cleavage" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.04:_Reactions_of_Ethers-_Claisen_Rearrangement" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.05:_Cyclic_Ethers-_Epoxides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.06:_Reactions_of_Epoxides-_Ring-opening" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.07:_Crown_Ethers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.08:_Thiols_and_Sulfides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.09:_Spectroscopy_of_Ethers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.10:_Interchapter-_A_Preview_of_Carbonyl_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.S:_Ethers_and_Epoxides_Thiols_and_Sulfides_(Summary)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Structure_and_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Polar_Covalent_Bonds_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Organic_Compounds-_Alkanes_and_Their_Stereochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Organic_Compounds-_Cycloalkanes_and_their_Stereochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Stereochemistry_at_Tetrahedral_Centers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_An_Overview_of_Organic_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Alkenes-_Structure_and_Reactivity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Alkenes-_Reactions_and_Synthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Alkynes_-_An_Introduction_to_Organic_Synthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Organohalides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Reactions_of_Alkyl_Halides-_Nucleophilic_Substitutions_and_Eliminations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Structure_Determination_-_Mass_Spectrometry_and_Infrared_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Structure_Determination_-_Nuclear_Magnetic_Resonance_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Conjugated_Compounds_and_Ultraviolet_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Benzene_and_Aromaticity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Chemistry_of_Benzene_-_Electrophilic_Aromatic_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Alcohols_and_Phenols" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Ethers_and_Epoxides_Thiols_and_Sulfides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Aldehydes_and_Ketones-_Nucleophilic_Addition_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Carboxylic_Acids_and_Nitriles" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Carboxylic_Acid_Derivatives-_Nucleophilic_Acyl_Substitution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Carbonyl_Alpha-Substitution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Carbonyl_Condensation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Amines_and_Heterocycles" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Biomolecules-_Carbohydrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Biomolecules-_Amino_Acids_Peptides_and_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "27:_Biomolecules_-_Lipids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "28:_Biomolecules_-_Nucleic_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_30:_Orbitals_and_Organic_Chemistry_-_Pericyclic_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_31:_Synthetic_Polymers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 18.6: Reactions of Epoxides- Ring-opening, [ "article:topic", "showtoc:no", "license:ccbysa", "source[1]-chem-61701", "licenseversion:40", "author@Steven Farmer", "author@Dietmar Kennepohl" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FOrganic_Chemistry%2FOrganic_Chemistry_(Morsch_et_al.
Best College Marching Bands In North Carolina, Articles C